Light-emitting-diodes based on ordered InGaN nanocolumns emitting in the blue, green and yellow spectral range.

نویسندگان

  • A Bengoechea-Encabo
  • S Albert
  • D Lopez-Romero
  • P Lefebvre
  • F Barbagini
  • A Torres-Pardo
  • J M Gonzalez-Calbet
  • M A Sanchez-Garcia
  • E Calleja
چکیده

The growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN (planar) layers of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confocal microphotoluminescence of InGaN-based light-emitting diodes

Spatially resolved photoluminescence PL of InGaN/GaN/AlGaN-based quantum-well-structured light-emitting diodes LEDs with a yellow-green light 530 nm and an amber light 600 nm was measured by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra were found in confocal micro-PL images. We also found clear correlations between PL intensities and peak...

متن کامل

Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range

Light-emitting diodes (LEDs) in the wavelength region of 535-570 nm are still inefficient, which is known as the "green gap" problem. Light in this range causes maximum luminous sensation in the human eye and is therefore advantageous for many potential uses. Here, we demonstrate a high-brightness InGaN LED with a normal voltage in the "green gap" range based on hybrid multi-quantum wells (MQWs...

متن کامل

Thermally enhanced blue light-emitting diode

Articles you may be interested in Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer Appl. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates J. Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting d...

متن کامل

Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes

Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the curr...

متن کامل

Fabrication of full-color InGaN-based light-emitting diodes on amorphous substrates by pulsed sputtering

InGaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient light sources capable of replacing incandescent bulbs. However, applications of InGaN LEDs are limited to small devices because their fabrication process involves expensive epitaxial growth of InGaN by metalorganic vapor phase epitaxy on single-crystal wafers. If we can utilize a low-cost epitaxial growth pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 25 43  شماره 

صفحات  -

تاریخ انتشار 2014